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Rigorous Quasi-TEM Analysis of Multiconductor

Transmission Lines in Bi-Isotropic Media—

Part II: Numerical Solution for Layered Media
Frank Olyslager, Member, IEEE, Eric Laermans, and Daniel De Zutter, Member, IEEE

Abstract-An integral eqnation technique is used to determine

the circuit parameters of the nonreciprocal and nonsymmetrical
set of transmission lines that describe a multiconductor line in
a layered hi-isotropic background in the quasi-TEM approx-
imation. The integral equation is solved with the method of

moments and pointmatchlng technique. The integrations arising

in the problem are handled carefully to allow a fast and accurate
implementation. The conductors have an arbitrary cross-section

consisting of straight and circularly curved segments. At the
edges of the conductors the singular behavior of the surface
charge density and surface current density is explicitly taken
into account.

I. INTRODUCTION

I N THIS paper the general potential problem of [1] is

numerically solved for the important special case of mul-

ticonductor lines embedded in layered media. Hence, we will

not repeat the whole introduction of [1] here, but we will

concentrate on the numerical solution technique. Multicon-

ductor lines with general cross-section embedded in layered

bianisotropic media have been studied in the past in the full-

wave regime [2] with the method of moments. In [3] the

theory for a finite element method in general three-dimensional

objects was developed. This theory could also be used

for waveguide problems. The publication [3] was, however,

restricted to the theory without numerical examples, and for

open structures it has been shown in the past that an integral

equation technique is more suited. In the present contribution

we concentrate on a quasi-TEM analysis for multiconductor

lines with a cross-section consisting of straight and circularly

curved segments. A quasi-TEM analysis has the advantage to

be much faster than a full-wave analysis and, for example,

for printed circuit boards and many MMIC applications a

quasi-TEM analysis is often satisfactory.

In the past, it has been shown that the use of integral

equation techniques is very adequate to solve two-dimensional

potential problems of infinite extent, as has been shown

in [4]–[7] for general cross-section multiconductor lines in

isotropic layered media and in [8] for thin strips in layered

media. In the present paper we will generalize the, in our

opinion, very efficient technique of [7] to hi-isotropic layered
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media. We want to remark that although we assume bi-

isotropic materials, the present method can also be used for

certain bianisotropic materials as has been discussed in [1].

The method in [7] is a space domain method of moments

and pointmatching technique. The layered medium in [7] is

taken care of by using the Green’s function of the layered

medium. The speed and accuracy of the method is a con-

sequence of the fact that the dependency of the excitation

and observation point in the spectral Green’s function is

known under analytical form and the fact that the singular

behavior at the edges of the conductors is taken into account.

Fortunately, lmuch of the numerical technique, especially the

spectral and basis function integrations, does not change

when generalizing [7] to hi-isotropic layers. This allows us

to mainly restrict ourselves in this paper to two things that

are fundamentally different for the hi-isotropic case. The

first one is the calculation of the spectral Green’s function,

which is much more complicated than in [7] and second

the singular behavior at edges. For this singular behavior

we use the results of [9]. Another difference from [7] is,

of course, that the electric and magnetic problem have to

be solved simultaneously. In the paper we try to give a full,

detailed description of the solution technique, however without

becoming redundant, i.e. without repeating most of the details

already put forward in [7].

Aside from the theory, a number of numerical examples

are included to illustrate the generality of the approach and

to illustrate the properties of the bitransmission line param-

eters ~, ~, ~-, and ~ derived in [1]. The examples are also

compared with results obtained in [10]. In [10] a quasi-static

image method was used to analyse a single thin microstrip on

a hi-isotropic substrate. The emphasis of this paper was on the

image technique and a very simple numerical technique was

used to solve the problem. A discrepancy between our results
and the results in [10] for the impedance of the micro strip line

is explained.

II. OUTLINE OF THE SOLUTION

Consider the structure of Fig. 1 with L lossless hi-isotropic

layers. Layer i (i = 1,2,.. . , AJ) has thickness d, and material

parameters c,, pi, ~, and f,. At the top and bottom of the

structure there is either a semi-infinite layer or a perfectly

conducting ground plane. For a semi-infinite layer at the

bottom (top) of the structure we set dl (dL) equal to zero.
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Fig. 1. Geometry of a multiconductor line in a layered hi-isotropic back-
ground medkrm

Quantities defined at the interface between two layers are

indicated by a double subscript. For example yi– I,i is the

y-coordinate of the interface between layer i – 1 and layer i.

The y-coordinate at the bottom (top) of the structure is denoted

by yo,l (y~,~+l). IV perfect electrical conducting (PEC)

conductors are embedded in the planar stratified medium. It

is assumed that no conductors are embedded in semi-infinite

layers. This is no restriction because one can always insert a

fictitious layer interface. The cross-section of each conductor

is bounded by straight or circularly curved segments. The

boundary curve of conductor k is denoted by ck. For the other

notations we refer the reader to [1].

Due to the layered nature of the structure, the potential

problem defined in [1] simplifies drastically. In each layer the

potentials @ and ~ now satisfy the ordinary simple Laplace

equations V~,~ = O and V~,~ = O. These two independent

Laplace equations are coupled at the layer interfaces through

the boundary conditions. At the interface between layer i

and layer i + 1 the boundary conditions are (with n~ =

~)

The last two conditions express the continuity of ‘UY “ ~tr,o

and Uv X ~t,,o.

From [1] it follows that the circuit matrices can be deter-

mined if one is able to find the surface charge density ,00 and

surface current density Jz,0 on each conductor for a given

distribution of the potentials ~~ and ~k (k = 1,2,..., N)

of the conductors. We will solve this problem by means of a

classical integral equation given by

“Gwdc’
b’k Ll,2,..., N ~Tk E c~. (2)

This is a coupled set of integral equations for the unknowns

p. and ~Z)o. The kernels of (2) are the Green’s functions

Gab (a = @ or ‘@ and b = p or ~) of the layered medium.

These Green’s functions are solution of

where G4b and G@b (b = p or J) satisfy the boundary condi-

tions (1) with ~, respectively ~ replaced by Gob, respectively

G~b. In the sequel we will restrict ourselves to the calculation

of G4P and G4P since the calculation of G4J and G,bJ is

totally analogous.

These Green’s functions are calculated in the classical way

by using a spectral approach. By exploiting the symmetry

of the spectral Green’s functions we can write the relation

between the spectral domain and space domain Green’s func-

tions, i.e. the inverse spatial Fourier transform, as

+Cu

GOP(+) = ~

/

G@P(kZ, yly’) COS [km(~ – z’)] dkz
7ro

+C43

“/GOP(+) =–:o G4P(kZ, y[y’) sin [k~(x – x’)] dkz.

(4)

We introduce asymptotic and finite Green’s functions G;;

and G% (a = # or 4) as in [71. G:; is calculated under
the assumption that kz is large allowing to express the kz -

dependence of G:; analytically. The function G~~ is taken

equal to Gap when kz < kc and equal to GaP – G~~ when

k.< k. < k.. At k. the difference between G~P and G~~

becomes negligible. For a discussion regarding the choice of kc

and ke we refer to [7]. Taking into account these considerations

we can rewrite the first equation of (4) as

/
G4P(+-’) = : ok’G& COS[kz(x – x’)] dkz

+CO

+~
/

G% COS[kZ(z – x’)] dkz (5)
~ kc

and similarly for G@P(TIT-’). Now we insert the expressions of

type (5) in the integral equations (2) and interchange the finite

integration [0, ke] with the integration over the contour Cj of

each conductor as in [7].

As in [7] a method of moments technique combined with

pointmatching is used to discretize the set of integral equations.

For the division in segments of the contours ck we refer ILO[’7].

Within each segment we represent PO and J,)O as

{:i[~)}=svl-l{:}(AO+A1s)
{1+~uz–1 y (~o+~l~). (6)

s is the distance from one of the endpoints of the considered

segment. AO, Al and 130, Ell are the unknowns for this seg-

ment and al, V1, CW, and vz follow from the edge condition.
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The singular behavior at an edge in hi-isotropic materials is

discussed in [9]. The values of al, V1, cw, and ?4 applicable

in the case considered here are given in the Appendix. For a

segment not containing an edge of the conductor al, VI, cw,

and V2 are zero, which means that (6) is part of a Taylor series.

If in this case we impose the continuity of (6) at the junction

of two segments we obtain a piecewise linear representation

for current and charge. By taking higher-order terms in s

into account in (6), a piecewise parabolic or piecewise cubic

representation can be obtained.

In the next sections we will show that the spectral Green’s

functions G~~ (a = @ or ~ and b = p or ~) can be written

in the same form as in [7] and that the asymptotic Green’s

functions Gg~ also have the same kz-dependence as in [7]

(remark that kv in [7] corresponds with km here). This means

that the integrations over the basis functions and the evaluation

of the spectral integrations are of the same type as in [7] and

that we do not have to repeat these integrations here.

III. THE SPECTRAL GREEN’s FUNCTION

In this section, the spectral Green’s functions

G. P(kL, gly’) (a = @ or ~) are calculated. We call

y’ the excitation point and y the observation point.

y’ is located in layer e and y is located in layer o,

which eventually can coincide with layer e. In both

these layers we introduce relative y-coordinates as

we = y’ – ye–l,e,’ue = ye,e+l – y’, wo = y – go–l,.,
and v. = y.,.+l – y.

The Green’s functions G.P (ka, yly’) satisfy the following

differential equations:

d2GtiP
% – k;G4P = 6(y – y’) —dy2

– k:G@P = O (7)

with the following boundary conditions at the interface be-

tween layer i and z + 1:

GdO continuous

A “ ,L& dy -

GA. continuous

<,+1 m

–jkz —
,Lf’%-

This means that the column matrix c(y) defined as

c(y) =

[

Gdp(kz, yly’)
n2 dG~p(ka, YIY’) _ jkZ~G@P(kz,

T dy
%p(k.> YIY!

1 dGtjp(L,
–j&:Gdp(kz, Y/Y’) + ; dy

YIY’)

YJ’J

(9)

is continuous for all y-values except at the source level y’.

The analytical solution of (7) in a layer z # e allows us

to calculate Ct,,+l = c(yt,~+l) from cl_l,~ = c(y~_l,~) as
=U =U

%,.+1 = exp (k~ di)~i (dt)~-l)t with ~, (dY) given by (10),
shown at the bottom of the page,

with ~* (6V) = 1 + exp ( –2kZ ti~). Note that this matrix

does not contain any exponential functions with positive

argument and is therefore suited for numerical implementation

for large kZ-values. Similarly we can calculate C,–l,, at the

bottom of layer i from G,i+l at the top of this layer with
cd cd

ct_l,, = exp (kzd, )~i (d, )c,,i+l where iVi (8Y) is equal to
=U
N, (dV) in (10), shown at the bottom of the page, but with

.f*(6y) = exp (–2k~8y) + 1. At the bottom and top of the
structure we can write, respectively, co,1 and c~,~+l as

[: 1Co,l =~ulluexp (–kZw. ) ~ exp (–kZ di)

[

e+l

CL,L+l =~dRd exp (–kzve) ~ exp (–kz di)
1

(11)

where s = O for a PEC plane and s =

(12)

1 for a semi-

infinite layer. The two components of R“ and Rd are the four

remaining unknowns of our problem which are determined by

imposing the boundary conditions at the source level y’. As a

last step we need the jump condition for c(y’) at the source

level y’

[

::

C(y’ + o) – C(y’ – o) = ~

o

(13)

If we now express c(y’ – O)(c(y’ + O)) as a function of

Co,l(CL,L+l) and use (11) and (13), we obtain the following

=U
N, (6,) = ; (lo)
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system of four linear equations for the four unknowns l?” and four waves we refer to [7]. When the excitation layer is
Bd: above the observation layer the asymptotic Green’s functions

()

G~~(kZ, yly’) are given by

zd
$.

lV. (V.)~.Rd – ~(w.)~.RU = ~ (14)
( )

Gdp(kz, YIY’) _–-*{Texp[-kZ(we + VO)]
G4P(kZ, y\y’) ~

+ ~,.+l exp [–kz(v. + zb + d.)]
with zd

[: 1d=’=[ii” ‘1’)

+ Ko-l,o?exp [–k. (do + w. + w.)]

=d c

+ ~.–I,.~~~,.+I w [–~.(d. + 4~i = ~ ~;(dj) ~

+ we + w.)]}

and where the matrix products mean left multiplication. The

solution of the system (14) is numerically easy but we need an

analytical solution. After some very tedious calculations one

finds that

where R“(z) and Rd(i) (z = 1, 2) are given in the Appendix

and are shown to be independent of the exact position of y’

in the excitation layer, i.e. they are independent of we and we.

With these expressions we can easily calculate c(y) at every

position y. For example for an observation point y in a layer

below the excitation layer we have

C(Y) = ~(wO)U.R” exp [–kc(We + we)]

[

e—1

1~~exp(-k~d).i=o+l (17)

If (o+ 1) > (e – 1) the product at the end of (17) drops out

and has to be replaced by one. Inserting (16) in (17) allows us

to write the spectral Green’s functions GaP(kz, yly’) (a = ~

or @) as

G.p(k., YIY’) = {Ap(&) exp [–hz(we + v.)]

+ Bap(kz)exp [–kz(ve + v. + de)]
+ C.p(k.) exp [–k.(d. + w. + w.)]

+ D.p(k.) exp [–k~(d~ + de + W, + w.)]}

[

e—1

~ ~ exp(-kmd~)

1=0+1 1 (18)

e—1

“()[~

1

0 exp(–kz d,)1 (19)

%=0+1

where

and

=U

K,,i+l =

=d
K z—l, ! =

\’ (pi-l pi) w-l k

[-

n~_l n! ( ))~t--l &—— —
k-l – ii pa–l Pi

(b G) L_2_‘i—

(21)

with

A .+l = (G+ Q+l)(k + Ih+l) - (6 + ‘5+1)(G - G+l)
a,%

WP4+1
(22)

cd
where the coefficients A~P (k.), B~P (k. ), Cap(h), and ~“ ~d ~d me reflection matrices ~d T is a transmission

D.P (k. ) are independent of we, V., WO,and VO.In other words, matrix. If there is a ground plane at the bottom of the structure
in (18) the dependence on the exact position of the excitation zd

then K. ~ is equal to minus the 2 x 2 unit matrix. Remark
and observation level is known under full ~~Ytical form. The hat (Igj is of tie sme fom as (18) wi~ ~z-independent

full expressions for Aap(kx), Bap(kz), cap(h), ~d D~p(kz) A B c
~p, and D.P coefficients except for the “1/2kz

are given in the Appendix. Note that the expressions in (18) fa~~r ~~’front of ~19)

are indeed of the same form as the spectral Green’s functions

in [7]. The other cases where the observation is above the

excitation level or where the excitation level is in the same IV. NUMERICAL EXAMPLES

layer as the observation layer are treated in a fully analogous In the first example we consider the microstrip stnucture

way. of Fig. 2, which was also analyzed in [10]. The width w of

For large values of kZ a simplified solution of the layered the infinitely thin strip and the thickness d of the substrate

medium is possible. In this case, as in [7], only four “waves” are the same, i.e. w = d. The substrate consists of pure

propagating from the excitation level ~’ to the observation nonreciprocal hi-isotropic material with Tellegen parameter x

level y are taken into account. For an interpretation of these or pure reciprocal hi-isotropic material with chirality parameter
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Fig. 2. Geometry of a microstrip on a hi-isotropic nonreciprocal or

substrate.

Blk.(nslm) Z(Q)

r

1~1, l,l!, ,1,, ,,, ,!l!l!! !!, !J1411 !!! o
0 0.5 1 1.5 2 2.5 3 3.5

XOr K

Fig.3. Propagation coefficients ~tiandimpedances fortieskucture of Fig.

2, with w = d, as a function of the Tellegen parameter x or the chkality

parameter~ fors, = 1,5, 10. The full tines arethesolutions found in [9]
and the dashed lines are our results.

K. The substrate further has a relative dielectric constant &r.

The graph on Fig. 3 shows a comparison of our results with the

results obtained in [10]. Since the microstrip is a symmetrical

structure we have that X = Y = O. Due to the properties

discussed in [1], the same results are obtained for a chiral

substrate where K is taken eqwd to x. This means that the

normalized propagation coefficient /3w and the impedance

Z are given, respectively, by ~ and G. For our

calculations we used 10 divisions on the strip. From the graph

it is seen that there is a good agreement for ~w but that there

is a considerable disagreement for Z for larger values of x.

We suspect that the difference is due to the fact that the full

coupling between the electric and magnetic problem is not

taken into account in [10]. In (60) of [10], it is assumed that

the charge density (current density) does not generate magnetic
flux (electric potential). This probably explains the difference

in the results. The fact that the agreement for the propagation

coefficients is better than the agreement for the impedance is

not surprising since the propagation constant is always less

susceptible to small inaccuracies. Errors of the same origin in

C and L cancel out in the propagation constant and amplify

each other in the impedance. Note further that the impedances

become infinite for x = A or K = &, i.e. for n = O.

As a second example we consider the structure of Fig. 4

consisting of four wires embedded in three hi-isotropic layers.

The dimensions and material parameters are indicated on the

figure. We used 24 divisions on each wire, which is more than

42424
air i +

1

1Er,3 = 5 ~,3 = 1.5
4
, ]~3=1 K3=2

@
++-

Fig. 4. Geomeky of four identical wires embedded in a three-layered

bi-isotriopic medium.

22 10
I

4

5

5

1::

4

4

Fig. 5. Geometry of two horseshoe-shaped conductors in a layered

hi-isotropic structure surrounded by a cylinder.

sufficient. With the numbering of the figure, the bitransmission

line parameters are given by

-(
186.88 –21.70 –2.39 –1.64

E.
–21.’70 85.64 –30.69 –13.27

–2.39 –30.69 95.09 –31.58

)

pF/m

–1.64 –13.27 –31.58 62.68

(

0.0 80.32 –37.53 –109.49

-80.32 0.0

+ i 37.53

20.22 116.79

–20.22 0.0 119.30

)

fF/m

109.49 –116.79 –119.30 0.0

(

194.20 64.88 36.06 33.37

z=
64.88 551.86 243.23 212.81

36.06 243.23 552.07 284.30

)

nH/m

33.37 212.81 284.30 607.90

(

0.0 –10.18 –144.34 –342.28

0.0 348.15 1397.0
+ ~ 14!~4 –348.15 0.0 1145.4

)

pH/m

342.28 –1397.0 –1145.4 0.0

-(

–28.56 74.97 35.77 –23.94

x=
–216.59 –4.72 141.49 –71.12

–117.59 –89.30 44.25 8.33

)

ps/m

–40.21 50.95 –5.76 –12.71
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100+
90
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-100:
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65

-400 ?l,,,, !,!, !,,,,,, !,!,,, [,,,,,,,,,,,,,,
41

~ 60
0 0.250.50.75 1 1.25 1.51.75 2

K
. — —

Fig. 6. The parameters ~, ~, and ~ for the structure of Fig. 5 as a function of ti. (C22 = Cll, C12 = C’zl, L22 = L1l, L12 = L21, X22 = XII, .k”12 =

X21,and R(X) = O).

(
51.37 –114.82 –50.80 –3.69

373.85

+ ~ 256.64

–5.01 –115.35 28.17

71.84 –52.03 5.68

)

ps/m

204.56 –6.49 –37.76 8.79

(23)

—
and the Y-matrix is the Hermitian conjugate of the ~-matrix.

Particularly interesting are the propagation coefficients of the

eight modes (four in each direction)

pi,+/kO = 1.5484 ~,,-/kO = 1.5501

p2,+/ko = 1.6970 ,B2,-/ko = 1.6955

~3,+/ko = 1.7998 ~3,-/ko = 1.7989

/34,+/ko = 1.8433 &/ko = 1.8451. (24)

This clearly shows that the structure of Fig. 4 is not bi-

directional.

As a third example we consider the more complicated struc-

ture of Fig. 5 consisting of two horseshoe-shaped conductors

embedded in a three-layered chiral medium surrounded by a

cylinder. This structure illustrates the possibility of analyzing

closed structures containing layered media. The surrounding

cylinder is chosen as ground conductor. Fig. 6 shows the

~, ~, and ~ matrices for this structure as a function of the

chirality parameter K of the central layer. Due to the symmetry

in the structure it is clear that Clz = Czl, C’Z’ = (2’11,LIZ =

1-,21,L22 = Lll, X12 = X21, and X22 = X1l. On the other

hand, since the structure contains only chiral materials, the

~ matrix is purely imaginary and the Z matrix is equal to

–~. Note also that ~ is different from zero, although the

structure is bigly symmetric. The reason for this is that the

symmetry is a point symmetry in the cross-section and not a

line mirror symmetry in the cross-section. If K is replaced by

the Tellegen parameter x then ~ and ~ remain unchanged and

~ is replaced by –j~, i.e. the new ~ becomes real.

V. CONCLUSION

A method of moments and pointmatching space-domain

intern-al eauation techniaue has been imdernented to determine

segmfttt 1

segment 2 Y

Fig. 7. Edge at the interface between two layers.

the bitransmission line parameters ~, ~, ~, and ~ for general-

shaped multiconductor transmission lines embedded in lmulti-

layered hi-isotropic media. The theory has been illustrated by

a number of examples showing the generality and accuracy

of the method.

VI. APPENDIX

First we discuss the values of VI, r+, CS1,and az in (6) for

segments at the edges of conductors. For an edge not at a

layer interface, i.e. an edge in homogeneous material, nothing

changes with respect to the isotropic case of [7]. This means

that al = a’ = O and that V1 = vz = n/A8 with A9

the opening angle of the conductor. For an edge on a layer

interface, such as is the case for a microstrip line, things are

more complicated. The situation and notations are depicted on

Fig. 7. As is shown in [9], V1 and vz are the two smallest

positive solutions of the following transcendental equation:

((V1S1C2 + P2S2C1) ~slc2 + &2cl
)

—
+(U2C1 – P1(2)(U2(1 – vl(z)s:si = o (25)
n1n2

with S, = sin (vAOi) and C, = cos (vAO, ) (i = 1, 2). The

al and a2 coefficients for segment 1 in layer 1 are given by
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‘=FF: ${$: El iii :1$ E{)

(30)

The al and CV2coefficients for segment 2 in layer 2 are found

by interchanging the indices 1 and 2 on the right hand sides

of (26) and by changing the signs of these expressions.

As a second part of this appendix we give the full ex-

pressions for the quantities lld(’) and IV(z) (i = 1,2) in

(16)

“(’)=4$)“(2)=4!3
‘u(l)=@:)‘U(’)=t?:)’27)

with E defined as

S = (b13b24 - b14b23)(b31b,2 – b32b41)

+ eq (–2k~ d~)[(bllb21 – b14b21)(b32b43 – b33b42)

+ (b13b21 – bllb23)(b32b44 – b34b42)

+ (b12b23 – b13b2z)(b31b44 – b34b41)

+ (bl~b22 – b12b24)(b31b43 – b33b41)]

+ exp (–4kZ d.)(bllbzz – blzbzl)(bssbAA – bsAbqs)

(28)

and the elements Cij (i, j = 1, 2, 3, 4) as

c(3_j)(3_k) = (–l)’+~{exp (–2kX cle)bkj(b33b44 – b34b43)

+ [b~s (b34b4j – b3j b44)

+ b~4(b3jb43 – b33b4j)]}

C(2+j)(2+~) = (–l)~+k{exp (–2k ~,)b(s-~.(s-j)

. (bllbzz – b12b21)

+ [bl(s-j)(bmb(s-~)z – bzzb(w)l)

+ bz(s-j)(blzb(s-~)l – bllb(w)z) ]}

c(3–j)(’2+~) = (-l) ’+k+l{b(w-)j @lsbzA - blAbn)

+ exp (–21?Z d.)[hj (kinb(s-~)~ – kb(5-~).3)

+ bzj(blAb(s-~)~ – blsb(s-~)~)]}

c(2+j)(3–k) = (-1)’+k+1{~~(5-j)(~31b~z - b41b32)

+ exp (–2k.t d,)[bs(s-j)(b~zb~l – b~lhz)

+ kq-j) (kkn – kh)]}

j=l,2 k=l,2 (29)

—
where b,j (i, j = 1, 2, 3, 4) are the elements of the matrix ~

defined as (30), shown at the top of the page, where UZj and

D.j (i = 1,2, 3,4 and j = 1,2) are, respectively, the elements—
of U. and ~, defined in (15) and where ~ is defined as

(31)

Finally we give the expressions for the AGP(kZ),

BtiP(k2), C.fl(kZ), and DaP(kz) coefficients in (18)

. ~oRu(2) .
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