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Rigorous Quasi-TEM Analysis of Multiconductor
Transmission Lines in Bi-Isotropic Media—
Part II: Numerical Solution for Layered Media

Frank Olyslager, Member, IEEE, Eric Laermans, and Dani€l De Zutter, Member, IEEE

Abstract—An integral equation technique is used to determine
the circuit parameters of the nonreciprocal and nonsymmetrical
set of transmission lines that describe a multiconductor line in
a layered bi-isotropic background in the quasi-TEM approx-
imation. The integral equation is solved with the method of
moments and pointmatching technique. The integrations arising
in the problem are handled carefully to allow a fast and accurate
implementation. The conductors have an arbitrary cross-section
consisting of straight and circularly curved segments. At the
edges of the conductors the singular behavior of the surface
charge density and surface current density is explicitly taken
into account.

1. INTRODUCTION

N THIS paper the general potential problem of [1] is

numerically solved for the important special case of mul-
ticonductor lines embedded in layered media. Hence, we will
not repeat the whole introduction of [1] here, but we will
concentrate on the numerical solution technique. Multicon-
ductor lines with general cross-section embedded in layered
bianisotropic media have been studied in the past in the full-
wave regime [2] with the method of moments. In [3] the
theory for a finite element method in general three-dimensional
objects was developped. This theory could also be used
for waveguide problems. The publication [3] was, however,
restricted to the theory without numerical examples, and for
open structures it has been shown in the past that an integral
equation technique is more suited. In the present contribution
we concentrate on a quasi-TEM analysis for multiconductor
lines with a cross-section consisting of straight and circularly
curved segments. A quasi-TEM analysis has the advantage to
be much faster than a full-wave analysis and, for example,
for printed circuit boards and many MMIC applications a
quasi-TEM analysis is often satisfactory.

In the past, it has been shown that the use of integral
equation techniques is very adequate to solve two-dimensional
potential problems of infinite extent, as has been shown
in [4]-[7] for general cross-section multiconductor lines in
isotropic layered media and in [8] for thin strips in layered
media. In the present paper we will generalize the, in our
opinion, very efficient technique of [7] to bi-isotropic layered
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media. We want to remark that although we assume bi-
isotropic materials, the present method can also be used for
certain bianisotropic materials as has been discussed in [1].

The method in [7] is a space domain method of moments
and pointmatching technique. The layered medium in [7] is
taken care of by using the Green’s function of the layered
medium. The speed and accuracy of the method is a con-
sequence of the fact that the dependency of the excitation
and observation point in the spectral Green’s function is
known under analytical form and the fact that the singular
behavior at the edges of the conductors is taken into account.
Fortunately, much of the numerical technique, especially the
spectral and basis function integrations, does not change
when generalizing [7] to bi-isotropic layers. This allows us
to mainly restrict ourselves in this paper to two things that
are fundamentally different for the bi-isotropic case. The
first one is the calculation of the spectral Green’s function,
which is much more complicated than in [7] and second
the singular behavior at edges. For this singular behavior
we use the results of [9]. Another difference from [7] is,
of course, that the electric and magnetic problem have to
be solved simultaneously. In the paper we try to give a full,
detailed description of the solution technique, however without
becoming redundant, i.e. without repeating most of the details
already put forward in [7].

Aside from the theory, a number of numerical examples
are included to illustrate the generality of the approach and
to illustrate the properties of the bitransmission line param-
eters C,L, X, and Z derived in [1]. The examples are also
compared with results obtained in [10]. In [10] a quasi-static
image method was used to analyse a single thin microstrip on
a bi-isotropic substrate. The emphasis of this paper was on the
image technique and a very simple numerical technique was
used to solve the problem. A discrepancy between our results
and the results in [10] for the impedance of the microstrip line
is explained.

. OUTLINE OF THE SOLUTION

Consider the structure of Fig. 1 with L lossless bi-isotropic
layers. Layer ¢ (¢ = 1,2, -- -, N) has thickness d, and material
parameters «,, i;,(, and £,. At the top and bottom of the
structure there is either a semi-infinite layer or a perfectly
conducting ground plane. For a semi-infinite layer at the
bottom (top) of the structure we set dq (dr) equal to zero.
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Fig. 1. Geometry of a multiconductor line in a layered bi-isotropic back-

ground medium.

Quantities defined at the interface between two layers are
indicated by a double subscript. For example y;_1; is the
y-coordinate of the interface between layer ¢ — 1 and layer ¢.
The y-coordinate at the bottom (top) of the structure is denoted
by yo1 (yr,r+1). N perfect electrical conducting (PEC)
conductors are embedded in the planar stratified medium. It
is assumed that no conductors are embedded in semi-infinite
layers. This is no restriction because one can always insert a
fictitious layer interface. The cross-section of each conductor
is bounded by straight or circularly curved segments. The
boundary curve of conductor k is denoted by cg. For the other
notations we refer the reader to [1].

Due to the layered nature of the structure, the potential
problem defined in [1] simplifies drastically. In each layer the
potentials ¢ and i now satisfy the ordinary simple Laplace
equations VZ¢ = 0 and VZ = 0. These two independent
Laplace equations are coupled at the layer interfaces through
the boundary conditions. At the interface between layer 3
and layer : + 1 the boundary conditions are (with n; =

Veit, — &)

¢ continuous qp continuous
_ﬁ_‘?ﬁ_é% _ z+1 a¢ 61-1—1%

w0y pidr  pg1 0y iy 0z (D

Gop 109 1 0 1 9y

p Oz i Oy Hot1 0T flg1 Oy

The last two conditions express the continuity of u, - Di; o
and u, X H tr,0-

From [1] it follows that the circuit matrices can be deter-
mined if one is able to find the surface charge density pg and
surface current density J, o on each conductor for a given
distribution of the potentials ¢z and ¢ (k = 1,2,---,N)
of the conductors. We will solve this problem by means of a
classical integral equation given by

O\ _ Gyp(rlr')  Gys(rir')
( ) rll{rrlk Z f (G¢p / GwJ(‘I‘|‘I‘/) )
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upo( )
. dc
NJz 0( )
Vk=1,2,---,N V7L € ck. 2)

This is a coupled set of integral equations for the unknowns
po and J.o. The kerpels of (2) are the Green’s functions
Gap (a = ¢ or 9 and b = p or J) of the layered medium.
These Green’s functions are solution of

Gz sl )= 1) o

where Gy and Gy (b = p or J) satisfy the boundary condi-
tions (1) with ¢, respectively v replaced by G4, respectively
G'yp- In the sequel we will restrict ourselves to the calculation
of Gy, and Gy, since the calculation of Gy and Gy is
totally analogous.

These Green’s functions are calculated in the classical way
by using a spectral approach. By exploiting the symmetry
of the spectral Green’s functions we can write the relation
between the spectral domain and space domain Green's func-
tions, i.e. the inverse spatial Fourier transform, as

+oo
G¢/)(Tl"'/) = Gyplke, yly') cos [k (z — z")] dk

400
Gpplke.yly') sin [k (z — 2)] dks.

CY)

We introduce asymptotic and finite Green’s functions Gg7
and GI'™ (a = ¢ or ) as in [7]. G%5 is calculated under
the assumption that k. is large allowing to express the k-
dependence of Gg? analytically. The function Gf ‘" is taken
equal to G, when ke < k. and equal to G,, — G“Z when
ke < kg <ke. At k. the difference between G, and Gg;
becomes negligible. For a discussion regarding the choice of k.
and k. we refer to [7]. Taking into account these considerations
we can rewrite the first equation of (4) as

L (% g
,—_;/0 Ggp cos [k (z — )] dk

Gyplrir') ==L

Gop(rlr)

1 oo as /

+ —7;/ ap €08 [k (z — 2")] dk,  (5)
and similarly for Gy, (r|r’). Now we insert the expressions of
type (5) in the integral equations (2) and interchange the finite
integration [0, k] with the integration over the contour ¢, of
each conductor as in [7].

As in [7] a method of moments technique combined with
pointmatching is used to discretize the set of integral equations.
For the division in segments of the contours ¢ we refer to [7].
Within each segment we represent pg and J, o as

{Ji(féfs)>} :5"“1{51 }<Ao + 419)
“”H{Of }(Bo+Bls)- ©)

s is the distance from one of the endpoints of the considered
segment. Ay, A; and By, By are the unknowns for this seg-
ment and oy, vy, as, and vy follow from the edge condition.
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The singular behavior at an edge in bi-isotropic materials is
discussed in [9]. The values of «j,v1, s, and vy applicable
in the case considered here are given in the Appendix. For a
segment not containing an edge of the conductor ay,vy, as,
and v are zero, which means that (6) is part of a Taylor series.
If in this case we impose the continuity of (6) at the junction
of two segments we obtain a piecewise linear representation
for current and charge. By taking higher-order terms in s
into account in (6), a piecewise parabolic or piecewise cubic
representation can be obtained.

In the next sections we will show that the spectral Green’s
functions Gﬂ" (a = ¢ or ¢ and b = p or J) can be written
in the same form as in [7] and that the asymptotic Green’s
functions G4 also have the same k,-dependence as in [7]
(remark that k&, in [7] corresponds with k, here). This means
that the integrations over the basis functions and the evaluation
of the spectral integrations are of the same type as in [7] and
that we do not have to repeat these integrations here.

III. THE SPECTRAL GREEN’S FUNCTION

In this section, the spectral Green’s functions
Gap(kz,yly') (@ = ¢ or o) are calculated. We call
y' the excitation point and y the observation point.
y’ is located in layer ¢ and y is located in layer o,
which eventually can coincide with layer e. In both
these layers we introduce relative y-coordinates as
We = Z/' — Ye—1l,esVe = Yeet+l — y/)wo = Y — Yo-1,0;
and Yo = Yo,041 — Y-

The Green’s functions G, (ks.y|y’) satisfy the following
differential equations:

d*Gg, hte.
_ k2 G =6 ! vp
dy2 xr ¢P (y y ) dy2
with the following boundary conditions at the interface be-
tween layer ¢ and ¢ + 1:

~k2Gyp =0 (7)

Gy, continuous Gy, continuous

_T.L.ZQ_dGW —jk QG — n?1 dGop — ik §it1 a

sl 1M e dy T dép '
ik Gy + — Y = g LG vp

! T dy J s P peys dy 8
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is continuous for all y-values except at the source level y'.
The analytical solution of (7) in a layer ¢ # e allows us
to calculate ¢,,4+1 = ¢(Yhit1) from ¢,_1; = ¢(yi—1:) as
Cror1 = exp (ko di)N; (dy)es_1,, with IV, (8,) given by (10),
shown at the bottom of the page,

with f¥(6,) = 1 % exp(—2k,6,). Note that this matrix
does not contain any exponential functions with positive
argument and is therefore suited for numerical implementation
for large k,-values. Similarly we can calculate ¢, , at the
bottom of layer ¢ from ¢; ;41 at the top of this layer with

— :d
C-1, = exp (ksd,)N;(d.)e,ip1 wWhere N, (6,) is equal to
N, (6,) in (10), shown at the bottom of the page, but with

fE(8,) = exp(—2k,6,) £ 1. At the bottom and top of the
structure we can write, respectively, ¢g1 and ez r41 as

e—1
co1 =K R"exp(—kyw.) [H exp (—ky di)}

i=1
—d etl
crr+1 =K R exp (—k,ve) [H exp (—k, dz)] (1
v=L
with
s 0
J
. " -,
K = M1 i
&, 1
_j_ik —k,
H1 M1
-2—8 0
K = CLO le_LS (12)
B
1237
where s = 0 for a PEC plane and s = 1 for a semi-

infinite layer. The two components of R* and R? are the four
remaining unknowns of our problem which are determined by
imposing the boundary conditions at the source level 3. As a
last step we need the jump condition for ¢(y’) at the source
level ¢

This means that the column matrix ¢(y) defined as 1,?2
ke, yly') oy +0)—ely' —0) = | o (13)
e
TL2 dGqu(kxa ylyl) . f / 0 '
- Lwelleotl) _ e Lyl 0
cy)=| # 3 ®
G¢P(k£7 y|y )
" CG . n o 1dGy,(ky,yly) If we now express ¢(y’ — 0)(c(y’ + 0)) as a function of
-J m; ¢p(kz, yly') + ﬁidy co,1(cr,r+1) and use (11) and (13), we obtain the following
e e iSe) o
Yy kign? y) J n? y
—u 1 k$51f_(§ ) f+(5 ) 0 _jng_ s
N8 =5 e (6.5 ! " il o) (10)
2| i 6) 0 e B,
. Cz _ k:):gz — by
0 i) CRG) S

Z
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system of four linear equations for the four unknowns R* and

R%:
2
N (v.)D.R* — N, (w)U.R* = | pe. (14)
0
0
with

2+1

jrvmany —d = i“]-:u
Di= [[[N;(dy)|K* Ti= |[[N;d;)|K* (15
j=L j=1

and where the matrix products mean left multiplication. The
solution of the system (14) is numerically easy but we need an
analytical solution. After some very tedious calculations one
finds that

d d(1 d(2
(gu> = <ﬁu§l;) + (exp (—2kme)Ru((2))) (16)
exp (—2kv. )R
where R*® and R*® (i = 1,2) are given in the Appendix
and are shown to be independent of the exact position of 3/
in the excitation layer, i.e. they are independent of v, and we,.
With these expressions we can easily calculate ¢(y) at every

position y. For example for an observation point y in a layer
below the excitation layer we have

e(y) = N, (wo)U,R" exp [~k (w, +v,)]

. [ 61:[ exp (—ky dl)] 17

i1=o+1

If (04 1)> (e — 1) the product at the end of (17) drops out
and has to be replaced by one. Inserting (16) in (17) allows us
to write the spectral Green’s functions G, (kz,yly’) (o = ¢

or ¢) as

Gap(ke, yly") = {Aap(kz) exp [—kz(we + vo)]
+ Bay(kz) exp [—kz (ve + vo + de)]
+ Coplks) exp [—ku(do + we + w,)]
+ Doy (kz) exp [~k (do + de + ve + w,)]}

1:[ exp (—k, dz)]

1=o0+1

where the coefficients Aqp(kz), Bap(ke), Cap(kz), and
D, (k) are independent of we, ve, w,, and v,. In other words,
in (18) the dependence on the exact position of the excitation
and observation level is known under full analytical form. The
full expressions for A,,(kx), Bap(kz), Cap(kz), and Dgp(kz)
are given in the Appendix. Note that the expressions in (18)
are indeed of the same form as the spectral Green’s functions
in [7]. The other cases where the observation is above the
excitation level or where the excitation level is in the same
layer as the observation layer are treated in a fully analogous
way.

For large values of k, a simplified solution of the layered
medium is possible. In this case, as in [7], only four “waves”
propagating from the excitation level y’ to the observation
level y are taken into account. For an interpretation of these

(18)
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four waves we refer to [7]. When the excitation layer is
above the observation layer the asymptotic Green’s functions
Goplks,yly’) are given by
G¢P(kw’ yly,) — L 7
(G'z/)p(kzz:, yly/) = 2%, {T CXp [ km('we + 'Uo)]

0

+ TKe,e+1 €xXp [—'ka: (Ue =+ v, + Cle)]
—d —

+ Ko—l,oT €Xp [_kw(do + we + wo)]

—d —u
+ Ko—-l oTKe e+1 €xp _kl‘ do + de
b Y +
+ ve + wo)|}
1 e-1
: exp(—kw dz) (19)
0 ot
where
_ o+1__d o+1
= = 1 0 =d
T= . Ti ;= H [(0 1) + K1-1,iji (20)
1=€ =€
and
1. 1 J(Q _ fi+1)
f“. _ 1 Bi o Hil i M21+1
YT Avi ](Q _ Cz+1) n; 4 Mt
9 14 Hit1 i Hit1
m_ M (& &)
223 Hit1 i i1
g _ Cz-i-l . 1
Mo Mot Hi Hit1
11 j<§¢—1 B §_)
=4 — 1 Hic1 e /Jéi—l i
L TA j(Ci—l _ _Ci> i1 _l_n_?
0 Hi—1 M Hi—1 223
nia j(fi—1_§i>
Hi—1 M MHoo1 Mg
(& ey ) e
M1 Hi Hi—1 [
with
Avist = (ei + €ir1) (0 + pror1) = (& + &41)(G — Git1)
1,2 -

Hilbit+1
(22)

—?} :d —d
K and K are reflection matrices and T' is a transmission
matrix. If there is a ground plane at the bottom of the structure

then Fg’l is equal to minus the 2 X 2 unit matrix. Remark
that (19) is of the same form as (18) with k,-independent
Aqpy Bap; Cap, and D, coefficients except for the 1/2k,
factor in front of (19).

IV. NUMERICAL EXAMPLES

In the first example we consider the microstrip structure
of Fig. 2, which was also analyzed in [10]. The width w of
the infinitely thin strip and the thickness d of the substrate
are the same, i.e. w = d. The substrate consists of pure
nonreciprocal bi-isotropic material with Tellegen parameter x
or pure reciprocal bi-isotropic material with chirality parameter
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d g, =1,y0rx

T,

Fig. 2. Geometry of a microstrip on a bi-isotropic nonreciprocal or chiral
substrate.

Z(£2)

B/ko(ns/m)
9 -250

-

—results in [9]
- —- our results

- 200
- 150
- 100

- 50

x or K

Fig. 3. Propagation coefficients Sw and impedances for the structure of Fig.
2, with w = d, as a function of the Tellegen parameter x or the chirality
parameter & for ¢ = 1, 5, 10. The full lines are the solutions found in [9]
and the dashed lines are our results.

#. The substrate further has a relative dielectric constant ..
The graph on Fig. 3 shows a comparison of our results with the
results obtained in [10]. Since the microstrip is a symmetrical
structure we have that X = Y = 0. Due to the properties
discussed in [1], the same results are obtained for a chiral
substrate where x is taken equal to y. This means that the
normalized propagation coefficient Jw and the impedance
Z are given, respectively, by vVLC and /L/C. For our
calculations we used 10 divisions on the strip. From the graph
it is seen that there is a good agreement for Gw but that there
is a considerable disagreement for Z for larger values of y.
We suspect that the difference is due to the fact that the full
coupling between the electric and magnetic problem is not
taken into account in [10]. In (60) of [10], it is assumed that
the charge density (current density) does not generate magnetic
flux (electric potential). This probably explains the difference
in the results. The fact that the agreement for the propagation
coefficients is better than the agreement for the impedance is
not surprising since the propagation constant is always less
susceptible to small inaccuracies. Errors of the same origin in
C and L cancel out in the propagation constant and amplify
each other in the impedance. Note further that the impedances
become infinite for x = /€, or k = \/&,, i.e. for n = 0.

As a second example we consider the structure of Fig. 4
consisting of four wires embedded in three bi-isotropic layers.
The dimensions and material parameters are indicated on the
figure. We used 24 divisions on each wire, which is more than
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Fig. 4. Geometry of four identical wires embedded in a three-layered
bi-isotriopic medium.

2 2 10

wn
B

Fig. 5. Geometry of two horseshoe-shaped conductors in a layered
bi-isotropic structure surrounded by a cylinder.

sufficient. With the numbering of the figure, the bitransmission
line parameters are given by

186.88 —21.70 —239 —1.64
G270 sse4 —s069 1327 ) o
—239 —3069 95.00 —31.58
_1.64 —13.27 —31.58 62.68
0.0  80.32 —37.53 —109.49
{-8032 0.0 2022  116.79
il g753  —2022 00 11930 | F/m
109.49 —116.79 —119.30 0.0
194.20 64.88 36.06 33.37
T_[o6488 o518 21323 vram)
36.06 243.23 552.07 284.30
33.37 212.81 284.30 607.90
0.0 —10.18 —144.34 —342.28
{1018 00 34815  1397.0
T 14434 —34815 0.0 1145.4 | PH/m
34228 —1397.0 —11454 0.0
_98.56 7497 3577 —23.94
= _[-21659 —472 11149 7112
=| 11759 —89.30 4425 833 |PS/m
—4021 5095 —576 —12.71
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C (pF/m) 500 110 L (nft/m)
3(X)*100 (ps/m)*00 7 - 105
300 100
200 95
100 90
] 85
O__ o
1 - 80
-100 s
-2003 ;_70
-3004 ;—65
-400 l | : E 60
0 02505075 1 12515175 2
X

Fig. 6. The parameters ﬁ, f, and X for the structure of Fig. 5 as a function of k. (C22 = C11,C12 = Ca1, Log = L11, Lne = Lai, Xoo = X131, X12 =

Xo1,and R(X) = 0).

51.37 —114.82 -—-50.80 -3.69

4 373.85 —=5.01 —-115.35 28.17 s/m
256.64  71.84 5203 568 |P
204.56  —6.49 =37.76 879

(23)

and the Y-matrix is the Hermitian conjugate of the X -matrix.
Particularly interesting are the propagation coefficients of the
eight modes (four in each direction)

Br.1/ko =1.5484
Bo.+/ko = 1.6970
Bs 1 ko =1.7998
Bat/ko =1.8433

Br,_ ko = 1.5501
Ba.— ko = 1.6955
fs,_ ko = 1.7989

Ba,— ko = 1.8451. (24)
This clearly shows that the
directional.

As a third example we consider the more complicated struc-
ture of Fig. 5 consisting of two horseshoe-shaped conductors
embedded in a three-layered chiral medium surrounded by a
cylinder. This structure illustrates the possibility of analyzing
closed structures containing layered media. The surrounding
cylinder is_chosen as ground conductor. Fig. 6 shows the
C,L, and X matrices for this structure as a function of the
chirality parameter « of the central layer. Due to the symmetry
in the structure it is clear that Ci5 = Ca1,Ca0 = C11, Lys =
Loy, Los = L11,X12 = Xo1, and X959 = Xj1. On the other
hand, since the structure contains only chiral materials, the
X matrix is purely imaginary and the Z matrix is equal to
—X. Note also that X is different from zero, although the
structure is higly symmetric. The reason for this is that the
symmetry is a point symmetry in the cross-section and not a
line mirror symmetry in the cross-section. If « is replaced by
the Tellegen parameter x then C and I:_remain unchanged and
X is replaced by —5X, i.e. the new X becomes real.

structure of Fig. 4 is not bi-

V. CONCLUSION

A method of moments and pointmatching space-domain
integral equation technique has been implemented to determine

segment 1
AB;
s .

g1 61 &
YIres \

S

A6,
segment 2

Fig. 7. [Edge at the interface between two layers.

the bitransmission line parameters C, L, X, and Z for general-
shaped multiconductor transmission lines embedded in multi-
layered bi-isotropic media. The theory has been illustrated by
a number of examples showing the generality and accuracy
of the method.

VI. APPENDIX

First we discuss the values of vy, s, a1, and aq in (6) for
segments at the edges of conductors. For an edge not at a
layer interface, i.e. an edge in homogeneous material, nothing
changes with respect to the isotropic case of [7]. This means
that oy = oy = 0 and that vy = vy = 7/Af with Af
the opening angle of the conductor. For an edge on a layer
interface, such as is the case for a microstrip line, things are
more complicated. The situation and notations are depicted on
Fig. 7. As is shown in [9], 11 and v are the two smallest
positive solutions of the following transcendental equation:

(115102 + p252C1) (%5102 + %S2Cl>
n ny

1
- nz—n%(mﬁl — &) (2l — ()83 =0 (25)

1
with S, = sin (vA6;) and C, = cos (vAb,) (i = 1,2). The
oy and o coefficients for segment 1 in layer 1 are given by
_u1n§5102 + paniSyCy

(12€1 — p1€2)S1S2n?

Q1] =

V=11
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F( P Dr n Dar Da2\ _Z(Un U12> _(Uxn U22)
7= Dy Dy D31 Da3g Uy Us Usi Usg (30)
- F(Pu Dz _ (Dn D) _Z(Un U N Uan U22)
Dy D D31 Dss U Ugp Ust Usg
1 mn3SiCs+ peniSCh (26) Where by G,j = 1,2, 3, 4) are the elements of the matrix b

a2

(p2ér — p1€2)51 8203

v=v)

defined as (30), shown at the top of the page, where U,; and

D, (i =1, _%, 3,4and j = 1, 2) are, respeciively, the elements
of U, and D, defined in (15) and where A is defined as

The o1 and ay coefficients for segment 2 in layer 2 are found
by interchanging the indices 1 and 2 on the right hand sides
of (26) and by changing the signs of these expressions.

As a second part of this appendix we give the full ex-
pressions for the quantities R and R*® (; = 1,2) in

(16)

R —

(] =

R —

[11] —

with = defined as

e

R —

R —

[ =

E = (byabas — bi4bas)(b3i1bag — b32bar)
+ exp (—2/% de)[(b11b24 - bl4b21)(b32b43 - 533542)
+ (b13b21 — b11b23)(bagbaa — b3abaz)

+ (b12baz — b1gbaz)(baibaa — bagbar)
+ (b14baa — b12b2a)(b31bas — b3sbay)]

= kxee ] e
e ( iy (31)
]Ce ]i,_

) .

Finally we give the expressions for the A,,(ks),

+ exp (—4kz de)(b11baa — b12b21)(basbas — b3abas)

and the elements ¢;; (2,7 = 1, 2, 3, 4) as

=) 3—k) = (—1)7 " {exp (—2k, de)br;(bs3baa — bsabas)

+ [br3(bsabaj — bsybaa)

+ bk4(b3]b43 - b33b4])]}
C(2+3)(2+k) = (=1)"*{exp (—2k, de)b(s—k)(5-2)

- (b11bas — b12ba1)

+ [bi(s—;)(b21b(5_k)2 — baob(5-k)1)

5 Bap(kz), Cap(ks), and Dq,(k,) coefficients in (18)
1 —Zei1
| n2 A L[ & =
Ze e < solke) ) _ 1 konZ 7n2 T, R
% Ad)P kx)/ 2 jCo 0 1 M
— g p ¢ Kz
5 27 o sl
__2_0 @n (BW(]%) \) _1 ! kyn2 7 n? 0 U,R*®
Ho fﬁ
1 —-j= 0
(Cqbp(kw)\) _1 kyn? ‘]ng
Cyp(kz) 2\ —je¢, 0 1 _%
.U, R*M
1 e o 0
(de(kr) \' 1 kyn2 n2
Dy p(ka J 2 -3¢, 0 1 _gﬁ
U, R, (32)
(28)
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